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Basic rheological considerations are applied to filled polymer systems. Filler particle size, 
phase interface, and network formation are among the variables considered. 

I NTROD UCTlO N 

At present, composites enabling solid bodies to  be produced with high macro- 
scopic strength on the basis of components available in modern technology 
are used as principal engineering materials. Worldwide production rates for 
polymer-based composites greatly exceed those for polymer substances. A 
feature of composite materials is the possibility of designing not only con- 
structions and goods, but also materials as such. One approach finding ex- 
tensive use is to create dispersion-strengthened substances whose particles 
bound crack propagation in polymer materials ; a second method implies the 
use of fibers which are distributed in a more pliable matrix and are arranged 
principally along main stresses. In the latter case, breaks in individual fibers 
cause no material destruction, since stresses are transmitted to other fibers 
via the matrix. 

With regard to a rigid component in the composite, it is necessary to 
distinguish between reinforced and filled products. In the former, strain and 
strength are predetermined mainly by reinforcement, i.e. by oriented layers 
of fibers or filaments, fabric or voluminous yarn, while the matrix holds the 
reinforcement together and enables the load to be distributed between re- 
inforcement elements ; in the latter case, the above properties are controlled 
by the matrix. Various disperse particles, short fibers, monocrystals are used 
for fillers. 

The matrix serves as a principal bearing component in filled composites, 
tPresented at the 10th All-Union Symposium on Polymer Rheology held June 20-24, 1978. 
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208 L. A. FAITELSON 

its properties vary within boundary layers at the particle surface, and the 
interaction between these layers, in addition to the effects of rigid inclusions, 
affects mechanical properties of a composite. The present review discusses 
filled polymer systems and their resistance in a fluid matrix state, i.e. under 
the conditions close to the processing situation. Such compositions make it 
possible to produce a wide range of substances maintaining technological 
production advantages of thermoplasts, i.e. extrusionability, injection mold- 
ability, and processibility by other modern and highly efficiegt techniques. 
Data of the effect of fillers on mechanical properties of the matrix in a flow 
state are applicable to any amorphous polymers, if temperature T exceeds 
glass transition temperature q. 

Filling can modify physico-mechanical, thermophysical, dielectrical and 
other properties of the matrix in a desired way, but at the same time it makes 
processing more complicated due to a considerable increase in viscosity with 
higher concentration of a solid filler. Therefore, designing a product implies 
a search for a trade-off between improving performance characteristics and 
deteriorating processibility, i.e. accounting for processing economy. The 
effect of polymer filling on the composite performance properties and design 
methods is well documented in the literature, whereas mechanical behaviour 
of filled systems when the polymer matrix is in a flow state has been given 
much less investigative attention. 

Filled polymers represent heterogenous systems. Linear dimensions of 
filler particles, however, are, in most cases, much smaller than those of the 
design elements of thus produced goods, and than those of operating ducts 
in the processing equipment; in other words, the macroscopic flow scale 
substantially exceeds average separation of adjacent filler particles. Therefore, 
filled polymer melts and solutions may be considered as some originally 
macrohomogenous isotropic continuous media ; their behaviour can be 
described by the known methods of continuum mechanics. 

Theoretical prediction of the effective rheological properties of filled 
polymer systems therefore depends on finding the relationship between 
macroscopic flow variables and rheological functions of each component, 
taking into account the average hydrodynamic pattern on each filler particle 
level. The solution of this problem goes back as far as Einstein’s contribution 
dealing with the effect of rigid spherical particles in extremely low concentra- 
tions on low molecular-weight fluid viscosities, i.e. the situation with no 
hydrodynamic interaction. Gudyir has found a similarity between the 
mathematical description of the linearized viscous flow and the linear 
elasticity of an incompressible solid body.’ Smallwood has derived an 
expression for a diluted dispersion of rigid spherical particles in the elastic 
matrix. Thus, it has been stated’ that qK/qM = GK/GM, where q K ,  q M  are 
viscosities, and GK, GM are shear moduli for the composite and the matrix, 
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PROPERTIES OF POLYMER MELTS 209 

respectively and G, < G,. Shear rate i, in the Newtonian media is replaced 
by shear strain in Hook bodies. Assumption is also made of a full matrix 
adhesion to filler particles. When filler concentration increases, hydro- 
dynamic interaction cannot be ignored, and the problem of calculating 
effective characteristics becomes enormously complicated. The lack of any 
common approach to describing various flow events for such compositions 
explains the great number of ratios suggested for viscosity to be determined 
as a function of filler concentration3. 

Ifthere is a solution for a composite with an elastic matrix, i.e. an expression 
for the effective modulus, then using the correspondence principles4 makes 
it possible to find effective viscoelastic characteristics as well as viscosity of 
a composite with the Newtonian matrix. Elastic and conjugated viscoelastic 
substances should have the same model representation. The correspondence 
principle is based on the application of integral transformation techniques 
leading to sophisticated inversion problems. Excluded here is, for example, 
the case of an incompressible viscoelastic matrix containing rigid isometric 
particles. For such compositions, the following equalities should be satisfied 

where HK = H K ( 0 ) ;  H ,  = H M ( 0 )  are relaxation time 0 spectra for the com- 
posite and the matrix ; and f ( C )  is the function only of the volume concentra- 
tion of filler particles. This is a case of utmost interest. A flow, however, is a 
much more complicated process as compared with elastic straining, since a 
flow may be characterized by superimposing hydrodynamic aggregation 
phenomena, orientation effects, i.e. the effects related to the time history of 
particles, imported by their adjacent counterparts. 

If the shape of rigid filler particles deviates from that of a sphere, then at 
low concentration the Newtonian matrix should reveal a relationship be- 
tween shear viscosity and shear rate, and the appearance of normal stress 
differences ; viscoelastic properties.' In this case, size distribution of particles 
is of substantial importance. Such effects are qualitatively determined in the 
Newtonian matrix, if spherical particles are elastically deformable, but 
viscoelastic properties of such systems are more sophisticated.' 

As filler particle sizes decrease, the probability of their uniform distribution 
within the matrix diminishes, and there arises a marked tendency towards 
aggregation and agglomeration, and a more or less developed secondary 
filler structure can be formed even at  low concentrations. Despite extensive 
discussion of the structuralized system flow mechanism in the literature, there 
is no satisfactory model quantitatively coupling interaction forces with 
rheologic functions of the medium. 

Particular consideration should be given to the importance of phenomena 
taking place on the phase interface of polymers. As distinct from low mole- 
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210 L. A. FAITELSON 

cular-weight fluids whose adsorptional layers on the solid surface are several 
angstroms thick, thickness of boundary layers in high molecular-weight 
fluids may reach several microns.' The mechanical properties of boundary 
layers differ substantially from these of the rest of the matrix, which fact has 
been proved by various independent investigative methods. A reservation 
should, however, be made in that boundary layers are not uniform in their 
mechanical properties, and here the matter in question is their effective thick- 
ness characterizing the system behaviour under experimental conditions. 

If the widespread hypothesis of fluctuation networks in polymer melts is 
to be accepted,' then filler particles cause an increasing number of such 
entanglements.' The participation of the same macromolecules in boundary 
layers of several adjacent particles, starting from a certain filler concentration, 
leads to  a secondary quasicrosslinked structure.' It is the boundary layer 
to solid particle volume ratio that should be the basis for evaluating the filler 
activity in a given matrix. High degrees of filling cause increased unsoundness 
including porosity, and environmental resistance of the product drops con- 
siderably.' Therefore, the filling degree is restricted by limit values in the 
above sense, and of interest are only lower concentrations which will be 
treated below. 

When processed under conventional flow conditions, polymer melts and 
concentrated solutions as distinct from low molecular-weight fluids reveal, 
in addition to nonlinear viscous resistance, an ability to accumulate enormous 
recoverable strains which cause a number of mechanical behaviour pecu- 
liarities.' When using such a medium as the matrix, it is necessary to account 
for the effect of filler particles on the totality of viscous and viscoelastic 
properties. Most experimental studies, however, dealt only with the effect on 
viscous properties,'4-' which is inadequate for predetermination of the 
product structure transformations in the course of a mechanical processing 
and the features imparted by a high elasticity of the matrix. Only in a few 
papers was an attempt made to  estimate elastic properties by an indirect 
factor, namely the extrudate swelling after leaving a circular nozzle (extrudate 
to nozzle diameter ratio DID,,). Some papers presented the results of de- 
termining filler effects on the first normal stress difference,' 7~'9 elastic re- 
covery following steady-state shear flow interruption, and complex shear 
modulus constituents at  periodic deformations. However, the effect of rigid 
disperse particle concentrations in the matrix on the above characteristics of 
shear flow and periodic linear deformation is presented only in. ''* 2 0 - 2 2  Note 
that periodic shear acting on filled polymers drastically reduces the linearity 
limit by strain amplitude, a fact which greatly complicated the measurement 
technique. In some cases, all the measurements performed were concerning 
only periodic deformation in nonlinear region, and it was suggested that, in 
highly filled polymers, there was no linear straining region. But methodologic- 
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PROPERTIES OF POLYMER MELTS 21 1 

ally correct experiments have shown this zone to be clearly outlined even at 
70 volume percent filling.23 At this concentration and frequence of 25 Hz 
the upper linearity limit of deformation is reduced by the factor of 5.104. 

LI N EAR VI SCO ELASTl CITY 

Measurements of the frequency dependence of the complex modulus in the 
linear deformation region are nondestructive mechanical spectrometry and 
supply data on relaxational properties of the original of material structure. 
In Refs. 11 and 21, for the frequency region corresponding to fluidity (I) and 
transition into the highly elastic stateI3 (II), there has been shown that the 
temperature frequency superposition principle is applicable to filled systems, 
while the temperature-frequency shift factor (aT)  and the apparent activation 
heat of viscoelastic relaxation times (AH,) being subject to no changes up to 
a certain filler concentration. When this critical concentration (C,) is exceeded, 
aT and AH, start increasing, a fact which, according to Ref. 24, evidences a 
qualitative structure alteration and is apparently caused by the influence of 
the interaction between boundary layers. This influence is not only sub- 
stantially dependent on dispersity (specific surface) of particles, but also 
varies in the action duration region corresponding to glass transition point, 
towards increasing critical concentration values. 

Reference 11 also distinguishes between filled (C < C,) and highly filled 
(C > C,) systems and suggests a criterion for the division of the former from 
the latter according to relaxational properties. 

If C < Ck, then the frequency relationships between real G ( w )  and 
imaginary G(o) parts of the complex modulus are brought into coincidence 
by means of multiplying the modulus values by a constant factor which is 
dependent only on the volume filling degree b(c). For solid viscoelastic bodies 
(or high-elasticity region), this was predicted in Ref. 5 and experimentally 
shown in Ref. 25. The ratios between shear moduli constituents ofthe compo- 
site and the matrix at the same deformation frequencies are equal to one 
another and to the initial (Newtonian) viscosities ratio, i.e. GZ/G, = G;/G& 
= qOK/qOM = qrel .  Note that experimentally determined values b(C) sub- 
stantially exceed those calculated from the “hydrodynamic” effect of rigid 
particle presence,’ estimated by the relationships presented in any of Refs 
26-28. For calcium carbonate particles in 8 % polyisobutylene solution in 
cetane, this excess is approximately 2.6, i.e. effective volume filling degree is 
C,  = aC, where a = 2.6. Here, by knowing the specific surface of particles it is 
possible to calculate the effective thickness of the boundary layer. Thus, 
relaxation time spectrum lg H(lg 0) of a filled system and relaxation time 
spectrum of the matrix feature the same shape, but the former is shifted up- 
wards along the ordinate axis ; in other words, the frequency dependence of 
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212 L. A. FAITELSON 

the loss angle tangent is not related to the degree of filling. Temperature 
changes equally shift the matrix and composition spectra along the time base. 
q,JC) is not a function of temperature. 

If C > C k ,  then the apparent activation heat for viscoelastic relaxation 
times rises with filler concentration. In the low frequency region, the increase 
rate for the complex shear modulus constituent values due to frequency rise 
is slower than those of the matrix and of filled compositions (provided the 
same frequencies are used), whereas the loss angle tangent values are smaller 
than those of the matrix and of filled compositions. The spectrum changes its 
shape (in log coordinates) due to  increased contribution to the region of high 
relaxation times. When C > C,  the concentration function of the initial 
viscosity is not invariant under temperature, and yl,,, = f (C ,  T) .  

It should be emphasized that previous ideas of the frequency-concentration 
superposition as ~ a l i d ’ ~ - ~ l  have not been confirmed both for filled and 
highly filled systems. 

For fluid polymers (melts and concentrated solutions), the original struc- 
ture is characterized, along with the initial viscosity, by the initial pseudo- 
equilibrium modulus of high elasticity GeO = lim,,,2-ro(ol 2 / ~ e ) .  These two 
parameters are determined at strain rates t + 0, and goes down to  the linear 
viscoelasticity theory. If the relaxation time spectrum is known, its zero 
moment is equal to the glassline shear modulus 

rn, = 1- a, H ( 0 )  d In 0 = Go 

rn,  = s- ~ OH(@ d In 0 = lim G / w  = q0 

rJ0 

the first moment 
m 

W - r O  

is equal to the initial viscosity ; the second moment 
m, 

m2 = 1 O2H(8) d In 0 = lim G’/w2 = a?0 

is equal to the initial normal stress factor. The initial pseudoequilibrium 
modulus is defined as the ratio 

- a, 0 - 0  

where JrO is initial pseudoequilibrium compliance. At  the zero spectrum 
moment, all relaxation times make equal contributions to be determined on 
the basis of valid measurement results not only in the regions of fluidity and 
transition into high elasticity region but also in the high frequency region, 
up to glassy region. For fluid polymers, such a wide range usually is not 
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PROPERTIES OF POLYMER MELTS 213 

covered experimentally. With the moment number increasing, a progressively 
larger contribution is made by high relaxation times, and therefore within 
the frequency band used, they have been determined more confidently. It has 
been stated that, for filled melts and solutions, the initial moduli ratio for the 
composite and the matrix is equal to their initial viscosity ratio-GeoK/GeoM 
= uOK/qOM. In highly filled melts and solutions, the modulus dependence on 
the filler content near Ck may pass through a local minimum, and it may turn 
out that GeOK < G e O M .  Such pattern of the concentration dependence can 
be explained by the formation of a secondary network at C > Ck due to 
boundary layer interactions. By the formation of two interpenetrating net- 
works, namely a fluctuation matrix meshing network and the above second- 
ary network, compliance values are additive. In principle, such compound 
systems are thermorheologically c~mplex ,~ ’  but the temperature-time 
superposition according to Williams-Landel-Ferry is also applicable at 
C > ck, when in the considered relaxation regions of fluidity and transition 
into high elasticity state. In general, except for a narrow region whose GeOK 
corresponds to the above minimum, the initial moduli of both highly filled 
and filled systems increase, thus causing elasticity reduction as filler content 
becomes larger. 

STEADY SHEAR FLOW 

Viscosity 

There is no commonly accepted view on the flow mechanism in filled polymer 
melts. As asserted in a number ofpapers, filled compositions are characterized 
by a plastic flow with fluidity limit, as distinct from anomalous viscous flow 
in matrixes. Such conclusions are based on the investigative results for carbon- 
black-loaded elastomers33 noted for forming “carbon-black  structure^".^^ 
Some highly dispersed fillers with less than 1 pm particle sizes also produce 
such interstructural effects in polymers. The present review deals with com- 
positions where the presence of the Newtonian flow at low shear rates is in- 
disputable, e.g. cases of more than 1 pm size particles or their aggregates 
dispersed in a polymer matrix.35 Filler concentration is also restricted by a 
limit value corresponding to the starting moment of dilatancy onset in the 
flow treated by Reynolds. Therefore, in the compositions under consideration, 
as in bulk polymer melts, the initial viscosity specifies a material in the case 
of a flow with an intact structure as shown by a complete set of relaxational 
processes, a fact which is confirmed by the equality of its values found experi- 
mentally and computed from relaxation time spectra, i.e. on the basis of two 
independent values.’ ‘ 9  ’’ 
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214 L. A. FAITELSON 

The relation between the shear stress and the shear rate in a steady-shear 
flow is reflected in a flow curve. Flow curves fit for the same composition at 
different temperatures and are brought into coincidence by means of a shift 
factor whose values are the same as for viscoelastic relaxation times, which is 
evidence for the identical nature of viscoelastic relaxation processes in the 
regions of fluidity and of transition into high elasticity state, as well as of 
viscous flow mechanisms.' 

Ideas concerning the hydrodynamic effective filling are insufficient for 
describing the non-Newtonian flow, since a relative viscosity increase due to 
filler particles introduced into the matrix will be, as a rule, an ambiguous 
function of the filler concentration ; and it depends on whether the relative 
viscosity is considered at the same shear rates or shear stresses. Approaches 
to treating these two correlation methods are presented in Ref. 11. 

Prediction of the composite viscosity dependence on the basis of matrix 
viscosity data is possible if a generalized dependence of the reduced viscosity 
(qr = q/qo) on the shear rate can be successfully derived. Ref. 36 shows melts 
to have such a reduction, provided the product samples compared are charac- 
terized by the same type of molecular-weight distribution and provided 
M b M,,  where M ,  is some critical molecular weight at which the fluctuation 
network starts its onset. At C < Ck fillings, it should have been expected that 
values q( j )  of the matrix and composite will be brought into coincidence by 
means of linear coordinate conversion. In such a situation, the characteristic 
relaxation time ratio of the composite and matrix viscous flows &/BY = u 
should be considered as a factor of increasing average effective matrix shear 
rate j K a  = j,,, . Then, matrix viscosity and two parameters b(c) and u(c) being 
the functions in a general case of effective filling degree, will describe com- 
posite viscosity q&) = b(C)q,(ju). The above assumption has been con- 
firmed. 

When C > Ck, such a reduction type takes place starting from definite j 
and corresponding a12,  which are structure strength indices for the secondary 
network.' When considering vre, = qK/qM at equal a1 values, only a slight 
f(C) dependence on o12 was observed. This fact served as a basis for deriving 
the log arithmetic additivity rule,37 or the variable separation rule38 reduced 
to I ] ~ , , ~ ~ , ~ = ~ ~ ~ ~ ,  = f(C,), wheref(C,) is the function only of volume filling and 
not of shear rate or shear stress. The results presented in Refs 11 and 22 and 
analysis of the data given in a number of other papers supply no confirmation 
to this rule for filled systems. This rule finds reflection in flow curve (al - j )  
shifts only along the Ig o12 axis to lg %', and in dependence coincidence in 
Ig(q/qo) - Ig a1 and lg(v/qo) - lg(jqo) coordinates which is true for the tem- 
perature-rate superposition. At C < Ck fillings, the concentration reduction 
in a flow curve is realized by a shift along the lg ol axis to lg '3 and along 
the lg j ,  axis to lg a. Flow curves and thus the viscosity versus shear rate de- 
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PROPERTIES OF POLYMER MELTS 215 

pendences in h’ghly filled systems, i.e. at C > Ck filler concentrations, cannot 
be brought into coincidence by means of linear coordinate conversion. 

High elasticity 

When flowing, polymer melts and concentrated solutions are accumulating 
elastic energy which, after unloading the material, causes recoverable strain 
(recovery) and which, in case of a simple shear flow, manifests in the onset of 
the normal stress difference components. Under the conditions of a steady 
shear flow, the highly elastic strain thus accumulated is constant. In case of 
an elastic fluid with a rather general hereditary function, with respect to 
directly proportional tangential stresses and to the quadratic dependence of 
the first normal stress difference versus shear rate the recoverable strain y o ,  
coincides with the strain derived from the relation ye = PW/2a,, . Increasing 
a12 the recoverable strain in the pre-stationary region of active loading (at 
aI2  = const) and that of recovery in the passive region (o12 = 0) are quite 
distinct, i.e. the recoverable strain accumulation process in the active region 
differs substantially from the recovery kinetics in the passive region. At 
definite values of j expressed by a step function stress overshoot is observed 
in the prestationary region. In Ref. 39 this phenomenon in melts and solutions 
is explained as being due to the onset of long-lived kinetic highly-elastic 
flow units (clusters) and due to variations in the flow mechanism. The cluster 
flow pattern has been found to be possible in polymer solutions and in poly- 
disperse by molecular weight melts. In monodisperse by molecular weight 
melts, the cluster flow mechanism onsets concomitantly with a flow stability 
loss, and with a transition into forced highly elastic state when a steady-state 
flow becomes impossible. Clusters accumulate energy which, in the process 
of recovery measurements, partially returns into the system and partially 
seems to dissipate. The cluster flow pattern is realized when 

is diminishing with i, increasing, i.e. d2E,/djZ < 0. This pattern corresponds 
to a partial transition of macromolecules into a mechanically induced 
nematic phase with predominantly macromolecule orientation within a 
cluster. The second criterium is d2E,/dy: = do,,/dy, < 0. Shear rates cor- 
responding to  the criterion of cluster flow onset will be designed as j K 1 ,  and 
those corresponding to the second criterium-as j K 2 .  The j K Z / ~ K 1 ,  ratio rises 
drastically as MWD-polymer expands. In a uniform shear rate field, jKlr 
corresponds to a loss of the flow stability. In capillary rheometers, the loss 
of stability occurs a t  jKZ . The latter can be explained by the damping effect 
of wall-separated melt layers and by cluster migration towards the center. 
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216 L. A. FAITELSON 

Thus, the shear rate range from jK1 to j K 2  should be considered as a meta- 
stable region, and that upwards ofy’,, as an unstable region. However, in the 
case of a steady shear flow, the contribution of clusters (consisting of macro- 
molecules that have escaped out of the “meshing network”) into ye  is rela- 
tively small and predominantly affects the recovery process. This may serve 
as an explanation for systematically observed yo  > y e .  Of essential interest is 
the fact stating that if a matrix is of entropic nature, then the entropic charac- 
ter of y e  is preserved for the matrix-based composites, provided that the 
temperature-rate superposition holds true.40 A question has emerged-that 
of a temperature dependence of the ye/yo  ratio. Evidently, it is yc, = Pw/2a, , 
that characterizes elastic energy of the fluctuation network in the course of 
a steady shear flow, rather than recovery which is accompanied by an altera- 
tion of the polymer structure sustained during the steady flow. 

The importance of measuring Pw for filled compositions under steady 
shear flow conditions is therefore quite obvious. Discrete disperse solid 
particles may serve to some extent as a model of clusters and, as will be shown 
further on, determining their effect on gI2  = f ( 9 )  and Pw = f ( j )  is of funda- 
mental significance. 

Figure 1 schematically shows the results of determining the functions for 

FIGURE 1 
parameter. 

Dependences u I 2 ( j ) .  P w ( j ) .  G ( w )  and G’(w) with filler concentration c used as a 
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PROPERTIES OF POLYMER MELTS 217 

8 % polyisobutylone IT200 solution in cetane and for compositions made on 
the basis of this solution and filled to 5,lO and 15 %of the volume with calcium 
carbonate particles at 60°C. As may be seen, at C < C ,  the matrix and com- 
posite flow curves are brought into coincidence by means of linear coordinate 
conversion, whereas for PAj) a function of such a coincidence is unachiev- 
able. oI2 value at any of the shear rates examined increases with filler con- 
centration, whereas with shear rate becoming higher, Pw tends to the matrix 
P, values at high shear rates. Frequency dependences of the complex shear 
modulus constituents for the same samples are presented for comparison. 

Figure 2 shows a plot of 012K/012M and PWK/PWM ratios versus shear rate. 

FIGURE 2 Values of u,2K/u,2M and PwK/Pw, versus j ,  and values of Gi/G& and GK/GM 
versus w. Volume filling C = 5 9 ,  - 1, lo"< - 2, 15 yo - 3. The same ratios at f --$ 0 and w + 0 
are indicated by arrows. 

Arrows to the left of the abscissa axis indicate the ratio values for initial 
viscosities and initial normal stress factors. Furthermore, GK/GIM and 
Gk/Gh ratios at o = j~ frequencies are presented for comparison. Note that 
the latter ratios characterize the loading rate effect and, contrary to o1 ZK/ol 2M 

and PwK/PWM,  do not reflect the stress level effect which offsets relaxation 
transitions due to emerging forced fluidity and forced high ela~ticity.~' The 
above flow features of filled systems are caused by an increase of the number 
of effective entanglements per molecule as a result of filling, and by changes 
of that number as a function of shear strain intensity. As shear strain intensity 
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218 L. A. FAITELSON 

rises, physical filler-filler couplings (i.e. secondary network at C > C,) and 
subsequently polymer-filler coupling are reversibly destroyed, i.e. the prob- 
ability of such coupling formations diminishes. Starting from definite j ,  
values, these fluctuation entanglements have no time to form ; a fluid poly- 
mer is a system composed of a matrix and a filler with a boundary layer ; 
the filler is not included in the entanglement network and, therefore can- 
not effect P ,  which, in this particular case, is caused only by the matrix 
being capable of larger recoverable strains. In the course of filling, o1 2 K / f f  2M 

increases with the number of effective entanglements per molecule. As the 
straining intensity rises, this ratio as compared at equal j~ values, decreases 
with the number of effective entanglements diminishing ; the more the filler 
concentration, the more pronounced the above decrease. Starting from 
definite shear rates when additional entanglements caused by the filler pre- 
sence are destroyed, 0 1 2 K / ( T 1 2 , + ,  value becomes stabilized, but at larger j ,  as 
distinct from P W K / P W M  -+ 1 it lends to a constant value larger than unity. 
This is due to purely hydrodynamic effects as opposed to high elastic effects 
and, as observed, when introducing any rigid inclusions into a viscous fluid. 
Thus, the filler having a close-to-spherical shape and no physical couplings 
with the matrix, produces, with increasing viscosity, no changes in Pw and 
values as compared with those of the matrix. Therefore, it may be concluded 
that, with C increasing, ji values diminish, and at equal i, modulus G ,  becomes 
higher. The P W K / P W M  ratio is a measure for the effect produced by additional 
couplings formed by the filler and being maintained at a given rate of the 
steady shear flow. "Destruction" of the polymer-filler couplings is under- 
stood as particles escaping out of the entanglement network with preserved 
interaction between the filler and M < M ,  molecular-weight molecules; in 
other words, the above mechanism is not similar to vacuole formation which 
is known for filled rubbers. 

In the low shear rate region P ,  N crf2. With shear rate rising and the initial 
structure partially destroyed, Pw N a:2 where ci = f ( c r l z )  and possesses a 
minimum whose value diminishes in inverse proportion to the filler con- 
centration. In the region corresponding to higher rates ci -+ 2 the effective 
shear modulus values are substantially higher than those in the low shear 
rate region. In the course of straining melts, no high shear rate region of the 
shear modulus constancy is observed, since the material loses its flow stability 
well below these shear rates (Figure 3). 

Figure 4 illustrates a shear rate dependence of accumulated strain ye  = 
P,/2aI2 of the matrix, i.e. of polyisobutylene solution in cetane (a typical 
highly elastic liquid), as well as changes in this strain due to introduction of 
the filler. It also shows ctg 6 = G'/G" values which are compared with yI , ,  
provided j ,  = o. Equivalence between ye = f ( j )  and ctg 6 = f ( w )  is expect- 
ed.46 However, for the matrix, this correlation is observed only within a 
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F I G U R E  3 f w ( u , z ) .  Volume filling: matrix-l.5yc{-2. 10>;,-3, l5"';,-4. 

F IGURE 4 Accumulated elastic strain PW/2a, ,  = j , ( j )  and ctg S = fZ(w), 

narrow shear rate and frequency range, namely within flow region (ctg 6 < 1). 
For filled compositions, this correlation is not observed, since their ctg 6 = 
f(w) values do not change as compared with those of the matrix, contrary to 
Y&). 
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a,,(y,) dependence at simple shear 

According to the kinetic theory of rubber high elasticity and on the basis of 
the Mooney-Rivlin potential, this dependence should be linear, i.e. G,  = 
const. These potentials and implied conclusions suitable for determining 
steady state strains in cross-linked rubbers are extensively used for investigat- 
ing high elasticity of melts under the conditions of steady-shear flow, i.e. 
under quasi equilibrium  condition^.^^ Figure 5 schematically shows c1 2 ( j )  
and crI2(ye) dependence for polymer solutions. With polymer concentration 
cp in solution rising, no lower Newtonian viscosity qm is reached, since elastic 
turbulence emerges before corresponding shear rates. Introducing a low 
molecular-weight solvent into a polymer decreases the “network” density 
and leads to reduction of G,, and G, and to higher ye at the same j~ values,41 
whereas introducing solid particles (of the filler concentration less than C,) 
leads to higher initial network thickness of initial modules GeO and of G, 
values as compared at the same cr l2  values, and to lower ye  at the same j ,  
values. 

Regions marked by dotted lines in Figure 5 are probably due to incomplete- 
ness of the pre-stationary flow region.39 Filling of melts and solutions at 

FIGURE 5 
weight polymer in the solution. I-Narrow MWD polymers. 

Flow curves and ~ , ~ ( y .  ) dependences versus concentration of a high molecular- 
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cp > cpK leads to a higher modulus and to a lower maximum ye  values at 
which elastic stability loss (i.e. lower ye at higher u12) occurs. Of illustrative 
value are also more abundant results of determining polymer extrudate 
swelling after leaving the nozzle and the effect of filling on such swelling 
(Figure 6). On descendant part of the crl - D / D ,  plot, no steady shear flow for 

FIGURE 6 Extrudate swelling. 1-Matrix. 2-Filled systems. 

the material occurs in the nozzle. Higher LID ratios, where L is a length of 
the nozzle, may require a substantial increase of the input pressure from the 
reservoir to the nozzle, taking into account melt compressibility effect. 

Filling can be seen to cause no essential changes in the pattern of crl2(ye) 
dependence as determined by the polymer matrix. 

The concentration dependence of flow and strain curves (ol - y e )  of poly- 
mer solutions should be distinguished not only for c p K  in the sense stated in 
Ref. 41 and designated further on as pK1, but also for qK2 starting from which 
flow curves for o12 = const show a “spurt” and the o12-ye dependence 
begins to manifest ambiguity. In the first case, the transition of some macro- 
molecules into a highly elastic state does not lead to a loss of flow stability; 
at cp > p,,, when macromolecules pass to a highly elastic state the steady- 
shear flow becomes unachievable. Filling decreases the solution concentra- 
tion pK while increasing the number of the network entanglements. 

Periodical shear (191 = IyI o cos wt) withfinite amplitudes permits the acquisition 
data unavailable under the steady flow conditions and, as emphasized in Ref. 
34, ofconsiderable importance for polymer physics : using stress as a parameter 
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and varying the loading rate through a set of constant stress amplitude values 
enables the relaxation spectrum and its changes to be studied versus the stress 
magnitude. A review of the most significant results for periodical shear 
deformation of polymers and a physical interpretation of changes of relaxa- 
tion spectrum versus Inl2( are given in Ref. 13. A considerable applied im- 
portance of this type of deformation is indicated for intensifying technological 
processes. The character of deformation dependence 1nI21 - ljl is determined 
entirely by the frequency deformation region. At low frequencies, the “flow” 
region is noted for the same mechanism as in case of a steady shear flow. At 
high frequencies, with higher deformation amplitudes in the region of transi- 
tion into a highly elastic state and in the highly elastic state fractions ofdefinite 
molecular weight pass selectively into clusters. Thus, the range of frequencies 
corresponding to fluidity gives no advantages as compared with the steady 
shear flow: at these frequencies, tg 6 in the nonlinear deformation region up  
to destruction will diminish with deformation amplitudes increasing. Within 
the range of frequencies corresponding to the transition from a highly elastic 
state into a glasslike state the conditions of periodical deformation are pos- 
sible only within the linear region. Thus, for technological purposes a con- 
siderably wide frequency range is of interest ; this range corresponds to the 
transition from a fluid state into a highly elastic state and to the highly elastic 
state when tg 6 increases with It/. Deformation at ultrasonic frequencies of 
finite amplitudes can essentially facilitate a number of technological processes 
due to mechanical and thermal destruction in thin layers ofthe material at  the 
interface of the setting surface of the processing equipment.43 Furthermore, 
in some cases the effect can be achieved under unsteady conditions. 

Specific features of the periodical deformation at finite amplitudes of linear 
monodisperse polymers are treated in Ref. 44. As shown above, shear rate in 
the matrix of filled compositions is higher than the effective shear rate in the 
material. Therefore for filled systems the deformation amplitude correspond- 
ing to a transition to nonlinear deformation region is reduced. 

At C > C K ,  nonlinearity at low frequencies is caused by small extreme 
deformation amplitudes of the secondary “network”, and relaxation transi- 
tions are shifted to a higher frequency region, as compared with the matrix. 
Therefore, the technologically effective range for many filled systems coincides 
with that readily realizable in the engineering sense. Note that periodical 
straining of materials includes rolling45 and calendering. 
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